If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23d^2-2d=0
a = 23; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·23·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*23}=\frac{0}{46} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*23}=\frac{4}{46} =2/23 $
| a*a+8a+15=0 | | 63=-5(5n+3)-n | | d6=-3 | | 0.5c=0.25 | | 2(4y-4)=8 | | 43(x-8)=5x+7 | | 5/4x+3/4=-3x+5 | | k*k+12k+35=0 | | 2(2y-6)=4 | | 25.6=-3.2x | | 2x-3/12+x=2x+3/2+5 | | (x+5)(x-1)=6 | | 360=2x+7x+(2x+15) | | -2(4x-3)+3(3x-6)-6=4-9 | | 2.5x+x+10=180 | | 6+2x2−3x=8x2 | | 1.25x+3/4=-3x+5 | | (8x-1)(6x+2)=0 | | 2(2y-5)=4 | | y+15·y+50·y=0;y(0)=1,y(0)=2 | | 9+-1.7x=6 | | 3+5x=10-6 | | 4a-5-a=11+4a | | 2/3d=14 | | 0.0169335x+12.13(x)^1.25=888.89 | | 3*r*r-22r=16 | | p^2-7p+3p=0 | | 4x=-90+x | | 180=7x+(x | | 4x-36=36+1/3x | | 0.10x+1.8(5-x)=1.2(5) | | 3.25w=52 |